Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(7): 3411-3417, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38311915

RESUMEN

In the past decade, metal halide materials have been favored by many researchers because of their excellent physical and chemical properties under thermal, electrical, and light stimuli, such as ferroelectricity, dielectric, nonlinearity, fluorescence, and semiconductors, greatly promoting their application in optoelectronic devices. In this study, we successfully constructed an unleaded organic-inorganic hybrid perovskite crystal: [Cl-C6H4-(CH2)2NH3]3SbBr6 (1), which underwent a high-temperature reversible phase transition near Tp = 368 K. The phase transition behavior of 1 was characterized by differential scanning calorimetry, accompanied by a thermal hysteresis of 6 K. In addition, variable-temperature Raman spectroscopy analysis and PXRD further verified the sensitivity of 1 to temperature and the phase transition from low symmetry to high symmetry. Temperature-dependent dielectric testing shows that 1 can be a sensitive switching dielectric constant switching material. Remarkably, 1 exhibits strong photoluminescence emission with a wavelength of 478 nm and a narrow band gap of 2.7 eV in semiconductors. As the temperature increases and decreases, fluorescence undergoes significant changes, especially near Tc, which further confirms the reversible phase transition of 1. All of these findings provide new avenues for designing and assembling new phase change materials with high Tp and photoluminescence properties.

2.
Inorg Chem ; 63(6): 3083-3090, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38278552

RESUMEN

Two-dimensional double perovskites have experienced rapid development due to their outstanding optoelectronic properties and diverse structural characteristics. However, the synthesis of high-performance multifunctional compounds and the regulation of their properties still lack relevant examples. Herein, we synthesized two multifunctional compounds, (C6H14N)4AgSbBr8 (1) and (F2-C6H12N)4AgSbBr8 (2), which exhibit high solid-state phase transition temperature, bistable dielectric constant switching, second harmonic generation (SHG), and bright emission. Through H/F substitution, the transition temperature increases and achieves a smaller band gap attributed to reduced interlayer spacing. Furthermore, we investigated the broad emission mechanism of the compounds through first-principles calculation and variable-temperature fluorescence, confirming the presence of the STE1 emission. Our work provides insight into the further development of multifunctional compounds and chemical modification that enhances compound properties.

3.
Chemistry ; 30(12): e202303717, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38072903

RESUMEN

Organic-inorganic hybrid multifunctional materials have shown significant application in lighting and sensor fields, owing to their prominent performance and diversity structures. Herein, we synthesized two multifunctional compounds: (propyl-quinuclidone)2 CdBr4 (1) and (F-butyl-quinuclidone)2 CdBr4 (2). By introducing light-emitting organic cation with flexible long chain, 1 and 2 exhibit excellent transition properties and bright blue-white fluorescence. Then, combine fluorescence lifetime and first-principal calculation, providing evidence for the electron transfer emission. Subsequently, investigated the impact of substituent carbon chain length (methyl to butyl), structural rigidity (C-C to C-F) and halide framework (Cl to I) on the fluorescence properties. Results indicate that Cd⋅⋅⋅Cd distance and structural rigidity play an important role in fluorescence. Overall, our research provides valuable insight and example for chemical modifications enhance compound performance.

4.
Dalton Trans ; 52(33): 11518-11525, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37539870

RESUMEN

Organic-inorganic hybrid metal halides for high-temperature phase transition have become increasingly popular owing to their wide operating temperature range in practical applications, e.g., energy storage, permittivity switches and opto-electronic devices. This paper describes the subtle assembly of two new hybrid perovskite crystals, [Cl-C6H4-(CH2)2NH3]2CdX4 (X = Br 1; Cl 2), undergoing high-T reversible phase transformations around 335 K/356 K. Differential scanning calorimetry (DSC), differential thermal analysis (DTA) and VT PXRD tests uncover their reversible first-order phase transition behaviors. Furthermore, the compounds exhibit switchable dielectricity near T, making them potential dielectric switching materials. Hirshfeld surface analysis well discloses a distinct difference in hydrogen-bonding interaction between 1 and 2. UV spectra and computational analysis demonstrate that the compounds are a type of direct-band-gap semiconductor. This research will contribute an effective approach to the structure and development of multifunctional molecular hybrid crystals.

5.
Dalton Trans ; 52(32): 11196-11202, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37522327

RESUMEN

Ferroelectric materials are not only important electronic functional materials, but also considered as the most promising intelligent basic materials, because they show good application prospects. Therefore, it is an urgent task to develop and explore new ferroelectric material systems. In addition, the most important feature of crown ethers is their ability to complex with positive ions, which is extremely useful in synthesis. We report that [NH3C2H4Cl(18-crown-6)](CF3SO3) (1) has a phase transition temperature Tc = 255 K, and there is an obvious SHG switch below Tc. At the same time, the saturation polarization value Ps = 1.25 µC cm-2 is obtained from the hysteresis loop, which directly proves the ferroelectric nature of compound 1. It is noteworthy that the second harmonic response test of compound 1 shows a symmetric transition from a non-centrosymmetric to a centrosymmetric point group, that is a symmetry break from the paraelectric phase to the ferroelectric phase. This work is expected to promote the further exploration of organic crown ether ferroelectrics and provide a way to design and synthesize organic crown ether ferroelectrics.

6.
Inorg Chem ; 62(31): 12525-12533, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37494604

RESUMEN

Switchable materials have gained significant attention due to their potential applications in data storage, sensors, and switching devices. Two-dimensional (2D) hybrid perovskites have demonstrated promising prospects for designing switchable materials, where the dynamic motion of the organic components coupled with the distortion of the inorganic framework provides the driving force for triggering multifunctional switchable properties. Herein, through the H/F substitution strategy, we report a polar 2D hybrid lead-based perovskite, (4,4-DCA)2PbBr4 (4,4-DCA = 4,4-difluorocyclohexylammonium) (1), which exhibits dual-stable behavior in a dielectric and second harmonic generation (SHG) response during the reversible phase transition process near the high Curie temperature Tc ∼ 409 K. The phase transition temperature is significantly increased by 41 K compared to the corresponding non-fluorinated (CHA)2PbBr4 (CHA = cyclohexylammonium). Remarkably, the material shows rare broad-band yellow emission under UV excitation, attributed to the induction of self-trapped exciton emission by the distortion of the [PbBr6]4- octahedra, as confirmed by the first-principles analysis. 1 also exhibited ferroelectricity with a saturation polarization value and a small coercive field. This study provides a new insight into the modification of multifunctional switchable materials through the H/F substitution strategy.

7.
Chemistry ; 29(57): e202301499, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37493075

RESUMEN

The combination of chirality and phase-transition materials has broad application prospects. Therefore, based on the quasi-spherical theory and the thought strategy of introducing chirality, we have successfully synthesized a pair of chiral enantiomeric ligands (R/S)-triethyl-(2-hydroxypropyl)ammonium iodide, which can be combined with a tin hexachloride anion to obtain a pair of new organic-inorganic hybrid enantiomeric high-temperature plastic phase-transition materials: (R/S)-[CH3 CH(OH)CH2 N(CH2 CH3 )3 ]2 SnCl6 (1-R/1-S), which have a high temperature phase transition of Tc =384 K, crystallize in the P21 chiral space group at room temperature, and have obvious CD signals. In addition, compounds 1-R and 1-S have a good low-loss dielectric switch and broadband gap. This work is conducive to the research into chiral high-temperature reversible plastic phase-transition materials, and promotes the development of multi-functional phase-transition materials.

8.
Inorg Chem ; 62(27): 10847-10853, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37366025

RESUMEN

Hybrid organic-inorganic perovskites (HOIPs) have attracted much attention due to their excellent properties and easy synthesis. As far as we know, most documented ferroelastics mainly focus on the 3D (three-dimensional) perovskites, the 2D monolayer perovskite ferroelastics are rarely reported before. In this work, we synthesized a 2D lead-based perovskite (C5NH13Br)2PbBr4 (1) (C5NH13Br = 5-bromoamylamine cation) by introducing flexible chain organic cations. The evolution of ferroelastic domains observed by a polarized light microscope confirms that compound 1 undergoes a ferroelastic phase transition at 392/384 K. In addition, its direct band gap is 2.877 eV. Interestingly, the material emits an attractive blue light (quantum yield 5.06%) under UV light. Three structural descriptors are introduced to quantitatively analyze the relationship between structural distortion and the shape of emission peak. This work provides a way to design multifunctional perovskite-type materials.

9.
Inorg Chem ; 62(15): 6189-6195, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37014228

RESUMEN

Since the switchable spontaneous polarization of ferroelectric materials endows it with many useful properties such as a large pyroelectric coefficient, switchable spontaneous polarization, and semiconductor, it has a wide range of application prospects, and the research of high-performance molecular ferroelectric materials has become a hot spot. We obtained a 0D organic-inorganic hybrid ferroelectric [(CH3)3NCH2CH2CH3]2FeCl4 (1) with well-defined ferroelectric domains and excellent domain inversion and exhibited a relatively large spontaneous polarization (Ps = 9 µC/m-2) and a Curie temperature (Tc) of 394 K. Furthermore, compound 1 belongs to the non-centrosymmetrical space group Cmc21 and has a strong second-harmonic generation signal. Interestingly, we also performed magnetic tests on 1, which confirmed that it is a magnetic material. This work provides clues for exploring the application of high-performance molecular ferroelectric materials in future multifunctional smart devices.

10.
Chemistry ; 29(17): e202203893, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36579748

RESUMEN

One dimensional (1D) organic-inorganic halide hybrid perovskites have the advantages of excellent organic cation modifiability and diversity of inorganic framework structures, which cannot be ignored in the development of multi-functional phase-transition materials in photoelectric and photovoltaic devices. Here, we have successfully modified and synthesized an organic-inorganic hybrid perovskite photoelectric multifunctional phase-transition material: [C7 H13 ONCH2 F]⋅PbBr3 (1). The synergistic effect of the order double disorder transition of organic cations and the change of the degree of distortion of the inorganic framework leads to its high temperature reversible phase-transition point of Tc =374 K/346 K and its ultra-low loss high-quality dielectric switch response. Through in-depth research and calculation, compound 1 also has excellent semiconductor characteristics with a band gap of 3.06 eV and the photoluminescence characteristics of self-trapped exciton (STE) broadband emission. Undoubtedly, this modification strategy provides a new choice for the research field of organic-inorganic hybrid perovskite reversible phase-transition photoelectric multifunctional materials with rich coupling properties.

11.
Chem Asian J ; 18(4): e202201206, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36579778

RESUMEN

Multifunctional materials are an attractive research area. Organic-inorganic hybrid perovskites are widely used in the design of these materials due to their rich properties and flexible composition. It is easy to obtain more photoelectric properties by introducing chiral groups as ligands. In this work, we synthesized chiral one-dimensional organic-inorganic hybrid perovskites, namely (R/S-3-HP)PbBr3 (1R/1S) (3-HP=3-hydroxy-piperidine). The enantiomer compounds undergo reversible phase transition at 349/336 K. Under the excitation light of 339 nm, 1R and 1S have a wide emission peak at 635 nm, showing orange light. In addition, the indirect bandgap is 3.29 eV and the SHG intensity is comparable to that of KDP. This work provides a way to design multifunctional chiral perovskite materials.

12.
Inorg Chem ; 61(27): 10454-10460, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35762569

RESUMEN

Multifunctional materials have always been an attractive research area, but how to combine multiple excellent properties in one compound remains a considerable challenge. Organic-inorganic hybrid compounds are widely used in the design of such materials due to their rich properties and flexible assembly. Herein, two new manganese(II)-based organic-inorganic hybrid compounds, (C6NH16)2MnBr4 (1) and (C7NH18)2MnBr4 (2), are prepared by the solution method. Compounds 1 and 2 both emit extremely strong green light under UV excitation, with high quantum yields of 45.93 and 50.98%, respectively. In addition, reversible solid-state phase transitions and obvious switchable dielectric properties are shown at 378/366 and 361/352 K, respectively. The coexistence of the dual stimulus-response characteristics of temperature and light in compounds 1 and 2 opens a new path for exploring more multifunctional phase transition materials.

13.
Dalton Trans ; 51(17): 6860-6867, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35438712

RESUMEN

Chiral organic-inorganic hybrid perovskites have gained extensive research interest due to their combination of chirality and the excellent optical, electrical and spin properties of perovskite materials, especially in two-dimensional hybrid perovskites. Herein, we report two-dimensional organic-inorganic perovskite enantiomeric ferroelectric [(R)-ß-MPA]2CdCl4 (1) and [(S)-ß-MPA]2CdCl4 (2) (MPA+ =methylphenethylammonium). Their mirror relationships are verified by both circular dichroism (CD) and crystal structures. At the same time, the two exhibit very similar ferroelectricity and related properties, including high Curie temperature (343 K), large spontaneous polarization (4.65 µC cm-2), and low coercive force field (13 kV cm-1). Unusually, at room temperature the crystal phase is monoclinic with the space group C2 and above the phase transition temperature it is triclinic with the space group P1, which means that the symmetry decreases with the increase of temperature. In addition, it exhibits a flexible switchable SHG response, while [(R)-ß-MPA]2CdCl4 and [(S)-ß-MPA]2CdCl4 have wide band gaps of 4.21 and 4.26 eV, respectively, mainly contributed by inorganic CdCl6 octahedra. This discovery opens a new way for the construction of two-dimensional enantiomeric molecular ferroelectrics.

14.
Chem Asian J ; 17(1): e202101134, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-34755488

RESUMEN

Cyclic organic amines are emerging as excellent building blocks to assemble organic-inorganic hybrid phase transition materials due to their flexible cyclic structure. Here, we have assembled a 1D organic-inorganic hybrid dielectric material C5 H6 NOPbBr3 (1) by alloying the cyclic organic amine 3-hydroxypyridine. 1 displays a remarkable switchable dielectric response induced by an order-disorder transformation of the organic moiety, this transformation behaviour is confirmed by DSC and Hirshfeld surface measurements. More interestingly, 1 has a narrowband emission (FWHM=4.64 nm) at 590 nm; FWHM is a major quality figure for narrowband photodetectors. In addition, 1 exhibits semiconducting properties with an indirect bandgap of 2.78 eV by the analysis of the UV-Vis absorption results.

15.
Inorg Chem ; 60(24): 18918-18923, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34872246

RESUMEN

A novel organic-inorganic hybrid perovskite crystal, [ClC6H4(CH2)2NH3]2CuBr4 (1), having experienced an invertible high-temperature phase transition near Tc (the Curie temperature Tc = 355 K), has been successfully synthesized. The phase-transition characteristics for compound 1 are thoroughly revealed by specific heat capacity (Cp), differential thermal analysis, and differential scanning calorimetry tests, possessing 16 K broad thermal hysteresis. Multiple-temperature powder X-ray diffraction analysis further proves the phase-transition behavior of compound 1. Moreover, compound 1 exhibits a significant steplike dielectric response near Tc, revealing that it can be deemed to be a promising dielectric switching material. The variable-temperature fluorescence experiments show distinct photoluminescence (PL) changes of compound 1. Further investigation and calculation disclose that the fluorescence lifetime of compound 1 can reach as long as 55.46 µs, indicating that it can be a potential PL material. All of these researches contribute a substitutable avenue in the design and construction of neoteric phase-transition compounds combining high Curie temperature and PL properties.

16.
Chem Sci ; 12(39): 13061-13067, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34745536

RESUMEN

Low-dimensional chiral organic-inorganic hybrid metal halides have attracted a lot of attention in recent years due to their unique intrinsic properties, including having potential applications in optoelectronic and spintronic devices. However, low-dimensional chiral molecular ferroelectrics are very rare. In this paper, we report a novel zero-dimensional molecular ferroelectric (C9H14N)2CdBr4 (C9H14N+ = protonated 3-phenylpropylamine), which has obvious dielectric and thermal anomalies and shows a high Curie temperature at 395 K. It crystallizes in the P21 space group at room temperature, showing a strong CD signal, large spontaneous polarization (P s = 13.5 µC cm-2), and a clear ferroelectric domain. In addition, it also exhibits a flexible SHG response. The photoluminescence spectrum shows that 1 has broadband luminescence. At the same time, compound 1 has a wide band gap, which is mainly contributed to by the inorganic CdBr4 tetrahedron. The high tunability of low-dimensional chiral molecular ferroelectrics also opens up a way to explore multifunctional chiral materials.

17.
Chem Commun (Camb) ; 57(85): 11225-11228, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34633013

RESUMEN

A novel chromium(VI)-based compound, [(CH3CH2)3N(CH2Cl)][CrO3Cl] (1), undergoes a high-temperature phase transition at around 340.9 K, accompanied by an ultra-large entropy change of 63.49 J mol-1 K-1. Compound 1 exhibits a moderate ferroelectric polarization of 0.48 µC cm-2 and a remarkable CD signal. Strikingly, 1 occupies a narrow band gap of 2.22 eV, which is chiefly attributed to the inorganic [CrO3Cl]- tetrahedron. It is believed that these findings will contribute to an alternative pathway for the design of multifunctional ferroelectric materials, whose potential applications will be in semiconductors, energy storage, etc.

18.
Chemistry ; 27(63): 15716-15721, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34498317

RESUMEN

The multifunctional two-dimensional (2D) organic-inorganic hybrid perovskites have potential applications in many fields, such as, semiconductor, energy storage and fluorescent device etc. Here, a 2D Ruddlesden-Popper (RP) perovskite (IPA)2 (FA)Pb2 I7 (1, IPA+ =C3 H9 NI+ , FA+ =CN2 H5 + ) is determined for its photophysical properties. Strikingly, 1 reveals a solid reversible phase transition with Tc of 382 K accompanied by giant entropy change of 40 J mol-1 K-1 . Further optical investigations indicate that 1 reveals a narrow direct bandgap (2.024 eV) attributed to the slight bending of I-Pb-I edge and inorganic [Pb2 I7 ]n layer and a superior photoluminescence (PL) emission with super long lifetime of 0.1607 ms. It is believed that this work will pave an avenue to further design multifunctional semiconductors that combines energy storage and photoelectric materials.

19.
Chemistry ; 27(54): 13575-13581, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34322911

RESUMEN

Molecular ferroelectrics of high-temperature reversible phase transitions are very rare and have attracted increasing attention in recent years. In this paper is described the successful synthesis of a novel high-temperature host-guest inclusion ferroelectric: [(C6 H5 NF3 )(18-crown-6)][BF4 ] (1) that shows a pair of reversible peaks at 348 K (heating) and 331 K (cooling) with a heat hysteresis about 17 K by differential scanning calorimetry measurements, thus indicating that 1 undergoes a reversible structural phase transition. Variable-temperature PXRD and temperature-dependent dielectric measurements further prove the phase-transition behavior of 1. The second harmonic response demonstrates that 1 belongs to a non-centrosymmetric space group at room temperature and is a good nonlinear optical material. In its semiconducting properties, 1 shows a wide optical band gap of about 4.43 eV that comes chiefly from the C, H and O atoms of the crystals. In particular, the ferroelectric measurements of 1 exhibit a typical polarization-electric hysteresis loop with a large spontaneous polarization (Ps ) of about 4.06 µC/cm2 . This finding offers an alternative pathway for designing new ferroelectric-dielectric and nonlinear optical materials and related physical properties in organic-inorganic and other hybrid crystals.

20.
ACS Appl Mater Interfaces ; 13(1): 2044-2051, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33347285

RESUMEN

Low-dimensional hybrid organic-inorganic perovskites (HOIPs) possess more localized electronic states and narrower conduction and valence bands to promote self-trapping of excitons and stronger exciton emission; therefore, they are widely used as building blocks for various applications in the fields of optoelectronics, photovoltaics, light-emitting diodes, luminescence, fluorescence, and so forth. Despite the past decades of intensive study, the discovered low-dimensional chiral HOIPs are rare as of the 1D chiral HOIP single crystals reported in 2003, as well as the low-dimensional chiral HOIP ferroelectrics are particularly scarce since the first chiral two-dimensional (2D) and/or one-dimensional (1D) HOIP ferroelectrics reported. Herein, two new low-dimensional HOIPs with the same conformational formula [R-MPA]2CdCl4 (R-MPA+ = (R)-(-)-1-methyl-3-phenylpropylamine) were successfully synthetized by means of regulating the stoichiometric proportion of R-MPA and CdCl2 in two ways of 1:1 (1) and 2:1 (2). By combining single-crystal X-ray diffraction, circular dichroism (CD) spectroscopy, differential scanning calorimetry, temperature-dependent dielectric constant, temperature-dependent second-harmonic generation (SHG) effect, polarization-dependent SHG response, and P-E hysteresis loop, we reveal that 1 is a 1D nonchiral molecular ferroelectric and 2 is the first zero-dimensional (0D) chiral ferroelectric with distinct CD signals; meanwhile, 2 exhibits increased properties of high-Tc, large dielectric constant, SHG isotropy, and ferroelectricity than that of 1. These results not only shed light on the high tunability of the low-dimensional HOIP ferroelectrics but also open up an avenue to explore multifunctional chiral ferroelectrics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...